首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7224篇
  免费   564篇
  国内免费   548篇
  2023年   89篇
  2022年   109篇
  2021年   436篇
  2020年   254篇
  2019年   326篇
  2018年   282篇
  2017年   244篇
  2016年   319篇
  2015年   436篇
  2014年   536篇
  2013年   545篇
  2012年   663篇
  2011年   562篇
  2010年   332篇
  2009年   354篇
  2008年   379篇
  2007年   305篇
  2006年   283篇
  2005年   208篇
  2004年   221篇
  2003年   214篇
  2002年   140篇
  2001年   137篇
  2000年   129篇
  1999年   144篇
  1998年   84篇
  1997年   71篇
  1996年   82篇
  1995年   70篇
  1994年   62篇
  1993年   31篇
  1992年   62篇
  1991年   43篇
  1990年   40篇
  1989年   22篇
  1988年   24篇
  1987年   28篇
  1986年   16篇
  1985年   33篇
  1984年   8篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
排序方式: 共有8336条查询结果,搜索用时 125 毫秒
991.
Cartilage destruction is a central pathological feature of osteoarthritis, a leading cause of disability in the US. Cartilage in the adult does not regenerate very efficiently in vivo; and as a result, osteoarthritis leads to irreversible cartilage loss and is accompanied by chronic pain and immobility (1,2). Cartilage tissue engineering offers promising potential to regenerate and restore tissue function. This technology typically involves seeding chondrocytes into natural or synthetic scaffolds and culturing the resulting 3D construct in a balanced medium over a period of time with a goal of engineering a biochemically and biomechanically mature tissue that can be transplanted into a defect site in vivo (3-6). Achieving an optimal condition for chondrocyte growth and matrix deposition is essential for the success of cartilage tissue engineering. In the native joint cavity, cartilage at the articular surface of the bone is bathed in synovial fluid. This clear and viscous fluid provides nutrients to the avascular articular cartilage and contains growth factors, cytokines and enzymes that are important for chondrocyte metabolism (7,8). Furthermore, synovial fluid facilitates low-friction movement between cartilaginous surfaces mainly through secreting two key components, hyaluronan and lubricin (9 10). In contrast, tissue engineered cartilage is most often cultured in artificial media. While these media are likely able to provide more defined conditions for studying chondrocyte metabolism, synovial fluid most accurately reflects the natural environment of which articular chondrocytes reside in. Indeed, synovial fluid has the advantage of being easy to obtain and store, and can often be regularly replenished by the body. Several groups have supplemented the culture medium with synovial fluid in growing human, bovine, rabbit and dog chondrocytes, but mostly used only low levels of synovial fluid (below 20%) (11-25). While chicken, horse and human chondrocytes have been cultured in the medium with higher percentage of synovial fluid, these culture systems were two-dimensional (26-28). Here we present our method of culturing human articular chondrocytes in a 3D system with a high percentage of synovial fluid (up to 100%) over a period of 21 days. In doing so, we overcame a major hurdle presented by the high viscosity of the synovial fluid. This system provides the possibility of studying human chondrocytes in synovial fluid in a 3D setting, which can be further combined with two other important factors (oxygen tension and mechanical loading) (29,30) that constitute the natural environment for cartilage to mimic the natural milieu for cartilage growth. Furthermore, This system may also be used for assaying synovial fluid activity on chondrocytes and provide a platform for developing cartilage regeneration technologies and therapeutic options for arthritis.  相似文献   
992.
To estimate the phylogeny and molecular evolution of a single-copy nuclear disrupted meiotic cDNA (DMC1) gene within the StH genome species, two DMC1 homoeologous sequences were isolated from nearly all the sampled StH genome species and were analyzed with those from seven diploid taxa representing the St and H genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) there is a close relationship among North American StH genome species; (2) the DMC1 gene sequences of the StH genome species from North America and Eurasia are evolutionarily distinct; (3) the StH genome polyploids have higher levels of sequence diversity in the St genome homoeolog than the H genome homoeolog; (4) the DMC1 sequence may evolve faster in the polyploid species than in the diploids; (5) high dN and dN/dS values in the St genome within polyploid species could be caused by low selective constraints or AT-biased mutation pressure. Our result provides some insight on evolutionary dynamics of duplicate DMC1 gene, the polyploidization events and phylogeny of the StH genome species.  相似文献   
993.
994.
Although several features of apoptosis and autophagy have been reported in the larval organs of Lepidoptera during metamorphosis, solid experimental evidence for autophagy is still lacking. Moreover, the role of the two processes and the nature of their relationship are still cryptic. In this study, we perform a cellular, biochemical and molecular analysis of the degeneration process that occurs in the larval midgut of Bombyx mori during larval-adult transformation, with the aim to analyze autophagy and apoptosis in cells that die under physiological conditions. We demonstrate that larval midgut degradation is due to the concerted action of the two mechanisms, which occur at different times and have different functions. Autophagy is activated from the wandering stage and reaches a high level of activity during the spinning and prepupal stages, as demonstrated by specific autophagic markers. Our data show that the process of autophagy can recycle molecules from the degenerating cells and supply nutrients to the animal during the non-feeding period. Apoptosis intervenes later. In fact, although genes encoding caspases are transcribed at the end of the larval period, the activity of these proteases is not appreciable until the second day of spinning and apoptotic features are observable from prepupal phase. The abundance of apoptotic features during the pupal phase, when the majority of the cells die, indicates that apoptosis is actually responsible for cell death and for the disappearance of larval midgut cells.  相似文献   
995.
Pm21 is an effective gene for powdery mildew resistance transferred from Haynaldia villosa into common wheat cultivars. No virulence against this gene has been detected so far. A set of 42 powdery mildew isolates collected in Israel and tested in the current study also revealed no virulence against this gene. Pm21 was previously reported to be located on the short arm of 6VS/6AL translocation chromosome. We constructed a high-density genetic map of chromosome 6A, consisting of 28 PCR markers and the Pm21 gene. A comparison with previously published genetic maps of wheat chromosome 6A revealed that the recombination rate in the 6VS/6AL translocation region was poor. We assume that suppressed recombination caused by the alien H. villosa genetic material is the most reasonable explanation for the tight genetic linkage and the inadequacy between the Pm21 genetic map and the Pm21 physical map of 6A. A large number of sequence-tag sites (STS) and simple sequence repeat markers, which co-segregate with or are closely linked to the Pm21 gene, and the conversion of three resistance gene analog markers into new STS markers, provide a reliable and easy-to-use molecular tool for marker-assisted selection of Pm21 in wheat breeding programs. An additional gene, Pm31, previously reported to be derived from Triticum dicoccoides, was mapped into a similar genomic location to Pm21. Screening of the parental lines and the mapping population with Pm21 diagnostic markers clearly confirmed that the donor line of Pm31 is H. villosa and not T. dicoccoides. Therefore, we conclude that Pm21 and Pm31 refer to the same gene, derived from H. villosa, and that the designation of Pm31 as a new Pm gene was erroneous.  相似文献   
996.
Apparent amylose content (AAC) is a key determinant of eating and cooking quality in rice and it is mainly controlled by the Wx gene which encodes a granule-bound starch synthase (GBSS). In this study, sixteen single-segment substitution lines harboring the Wx gene from 16 different donors and their recipient HJX74 were used to detect the naturally occurring allelic variation at the Wx locus. The AAC in the materials varied widely and could be grouped into glutinous, low, intermediate, and two high AAC sub-classes, high I (24.36?C25.20%) and high II (25.81?C26.19%), under different experimental environments, which showed a positive correlation with the enzymatic activity of GBSS. One insertion/deletion (InDel) and three single nucleotide polymorphisms in the Wx gene were detected and their combinations resulted in the variation of five classes of AAC. Based on the results of AAC phenotypes, GBSS activities and cDNA sequences, five Wx alleles, wx, Wx t, Wx g1, Wx g2, and Wx g3, were identified, two of which, Wx g2 and Wx g3, are separated for the first time in this study. Under different cropping seasons, the AAC differed significantly for the Wx t and Wx g1 alleles, with higher AAC in the fall season than in the spring season, but did not differ significantly for the wx, Wx g2, and Wx g3 alleles. In conclusion, the present results might contribute to our understanding of the naturally occurring allelic variation at the Wx locus and will facilitate the improvement of rice quality by marker-assisted selection.  相似文献   
997.
Abnormal genome hypermethylation participates in the tumorigenesis and development of prostate cancer. Prostate cancer cells highly express DNA methyltransferase 3 (DMNT3) family genes, essential for maintaining genome methylation. In the present study, multi-target siRNA, based on the homologous region of the DNMT3 family, was designed for the in vitro investigation of its effects on the proliferation, migration, and invasion of TSU-PR1 prostate cancer cells. The consequential cell-cycle derangement, through DNMT3A/B or only DNMT3B silencing, was partially efficient, without affecting apoptosis. DNMT3A silencing had absolutely no effect on changing TSU-PR1 cell biological behavior. Hence, DNMT3B alone apparently plays a key role in maintaining the unfavorable behavior of prostate-cancer cells, thereby implying its potential significance as a promising therapeutic target, with DNMT3A simply in the role of helper.  相似文献   
998.
Y Long  Z Li  JH Tan  TM Ou  D Li  LQ Gu  ZS Huang 《Bioconjugate chemistry》2012,23(9):1821-1831
In order to improve the selectivity of 5-N-methyl quindoline (cryptolepine) derivatives as telomeric quadruplex binding ligands versus duplex DNA, a series of peptidyl-benzofuroquinoline (P-BFQ) conjugates (2a-2n) were designed and synthesized. Their interactions with telomeric quadruplex and duplex DNA were examined by using the fluorescence resonance energy transfer (FRET) melting assay, surface plasmon resonance (SPR), circular dichroism spectroscopy (CD), and molecular modeling studies. Introduction of a peptidyl group at 11-position of the aromatic benzofuroquinoline scaffold not only effectively increased its binding affinity, but also significantly improved its selectivity toward telomeric quadruplex versus duplex DNA. Combined with the data for their inhibitory effects on telomerase activity, their structure-activity relationships (SARs) studies showed that the types of amino acid residues and the length of the peptidyl side chains were important for the improvement of their interactions with the telomeric G-quadruplex. Long-term exposure of human cancer cells to 2c showed a remarkable cessation in population growth and cellular senescence phenotype, and accompanied by a shortening of the telomere length.  相似文献   
999.
Zeng X  Liu S  Yu H  Ji L  Li L  Huang J  Bai H  Qiu X 《DNA and cell biology》2012,31(8):1384-1391
The associations between DNA repair capacity (DRC), DNA repair gene polymorphisms, and the incidence of hepatocellular carcinoma (HCC) have not been determined in high-risk areas. The aims of this study were to investigate whether DRC is related to the incidence of HCC and to determine whether polymorphisms in the DNA repair genes that regulate DRC are associated with the risk of HCC. First, a small case-control study was conducted to examine the association between DRC and the incidence of HCC and the environmental and genetic factors regulating DRC. Then, a large case-control study was conducted to determine whether those DNA repair gene polymorphisms shown to regulate DRC were related to the risk of HCC. The median DRC was significantly lower among the cases (0.80) than the controls (0.93). A multivariate linear regression analysis showed that the HBsAg status (p<0.01), ethnicity (p=0.01), and polymorphisms in the XRCC3-241 (p=0.01) and APE1-148 (p=0.03) gene loci may be impact factors for DRC. In the large case-control study, a stratified analysis showed that individuals with the APE1-148-combined genotype GT+TT likely had a significantly higher HCC risk compared with those with only the GG genotype (crude odds ratio=1.93, 95% confidence interval=1.17-3.17) among the Zhuang ethnicity. However, nonsignificant differences were observed between XRCC3-241 polymorphisms and the HCC risk. DRC may be related to the incidence of HCC as determined by environmental and genetic factors found in southwestern part of the Guangxi Province. Gene-environment interactions play an important role in the incidence and progression of HCC.  相似文献   
1000.
Hotta T  Kong Z  Ho CM  Zeng CJ  Horio T  Fong S  Vuong T  Lee YR  Liu B 《The Plant cell》2012,24(4):1494-1509
Plant cells assemble the bipolar spindle and phragmoplast microtubule (MT) arrays in the absence of the centrosome structure. Our recent findings in Arabidopsis thaliana indicated that AUGMIN subunit3 (AUG3), a homolog of animal dim γ-tubulin 3, plays a critical role in γ-tubulin-dependent MT nucleation and amplification during mitosis. Here, we report the isolation of the entire plant augmin complex that contains eight subunits. Among them, AUG1 to AUG6 share low sequence similarity with their animal counterparts, but AUG7 and AUG8 share homology only with proteins of plant origin. Genetic analyses indicate that the AUG1, AUG2, AUG4, and AUG5 genes are essential, as stable mutations in these genes could only be transmitted to heterozygous plants. The sterile aug7-1 homozygous mutant in which AUG7 expression is significantly reduced exhibited pleiotropic phenotypes of seriously retarded vegetative and reproductive growth. The aug7-1 mutation caused delocalization of γ-tubulin in the mitotic spindle and phragmoplast. Consequently, spindles were abnormally elongated, and their poles failed to converge, as MTs were splayed to discrete positions rendering deformed arrays. In addition, the mutant phragmoplasts often had disorganized MT bundles with uneven edges. We conclude that assembly of MT arrays during plant mitosis depends on the augmin complex, which includes two plant-specific subunits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号